The Riesz mean $\sigma_{T}^{\alpha,\gamma}$ is defined as

$$\sigma_{T}^{\alpha,\gamma} = \left(\frac{\alpha \gamma}{T}\right) \int_{0}^{T} \left(1 - \left(\frac{t}{T}\right)^{\gamma}\right)^{\alpha-1} \left(\frac{t}{T}\right)^{\gamma-1} s_{t}f(x) dt, \quad T > 0$$

where $t > 0$, $\alpha > 0$, $\gamma > 0$, and $s_{t}f(x)$ is the Dirichlet integral of $f \in L^{p}(R)$, the Lebesgue space for $0 < p < \infty$. We discuss some properties of the Riesz means and its special relationship with the Hardy spaces $H^{p}(R)$. (Received September 13, 2014)