For an operator $A : M \to M$ on a subspace of an infinite dimensional Hilbert space H, Chan and Turcu showed that there exists an operator $T : H \to H$ that is chaotic and $T|_M = A$. Such an extension exists only if the subspace M has an infinite codimension in H, i.e., $\dim(H/M) = \infty$. Their extension T has a nontrivial kernel and therefore cannot be invertible. In this talk, we present a result that proves the existence of an invertible operator $T : H \to H$ that is chaotic and extends A. Moreover, we give a necessary and sufficient condition for the existence of an invertible chaotic extension of an operator on the Hilbert subspace. (Received September 16, 2014)