In the context of vertex list-coloring, Hall’s condition is a generalization of Hall’s marriage theorem and is necessary (but not sufficient) for a graph to admit a proper list-coloring. A list assignment \(L \) to a graph \(G \) is called Hall if \((G, L) \) satisfy Hall’s condition. A graph \(G \) is Hall \(m \)-completable if every partial proper \(m \)-coloring of \(G \), whose corresponding list assignment is Hall, can be extended to a proper \(m \)-coloring of \(G \). In 2011, Bobga et al. asked if all graphs \(G \) are Hall \(\Delta(G) \)-completable, thereby posing a possible list-coloring variant of Brooks theorem. We give a straightforward and short proof that answers this question in the affirmative, as well as discuss some related results. (Received September 10, 2014)