The weak distance between two vertices in a digraph G is the length of a shortest directed path connecting these two vertices. The weak diameter of a digraph G is the longest weak distance among all pairs of vertices in G. We define $w(n, d)$ to be the smallest number of edges a digraph G with n vertices and weak diameter d can have. We determine $w(n, d)$, whenever n is large enough as a function of d. This is joint work with Zoltan Füredi. (Received September 16, 2014)