Matthew J Prudente* (mjp209@lehigh.edu), 8 Duh Dr, Apt 221, Bethlehem, PA 18015.

Two-Player Pebbling on Diameter 2 Graphs. Preliminary report.

Given a graph G with pebbles on the vertices, we define a *pebbling move* as removing two pebbles from a vertex u, placing one pebble on its neighbor v and discarding the other pebble as a toll. The *pebbling number* $\pi(G)$ is the least number of pebbles needed so that every arrangement of $\pi(G)$ pebbles can place a pebble on every goal vertex r through a sequence of pebbling moves. We introduce a new variation on graph pebbling called *two-player pebbling*. In this, players called the *mover* and the *defender* alternate moves, with the stipulation that the defender cannot reverse the previous move. The mover wins if they can place a pebble on the root and the defender wins if the mover cannot. We define $\eta(G)$, analogously, as the minimum number of pebbles such that given every configuration of the $\eta(G)$ pebbles and every root vertex r, the mover has a winning strategy. We investigate winning strategies and configurations for both players on a special class of diameter 2 graphs (Received September 01, 2014)