Inspired by the Fibonacci identity $f_{n-1} \times f_{n+1} + 1 = f_n^2$ for odd n, we define a relation \sim on \mathbb{N} by $a \sim b$ if and only if $ab + 1 = k^2$ for some k. \sim is obviously symmetric but not reflexive nor transitive. The relation results in an undirected graph G with vertex set \mathbb{N} and an edge between a and b if $a \sim b$. We investigate the neighbor sets $N(a) = \{x \in \mathbb{N} \mid a \sim x\}$ and the upper bounds for the distance $d(a, x) = \min\{\text{length of paths from } a \text{ to } x\}$ for special $a \in \mathbb{N}$. We also look into triples (a, b, c) with $a \sim b$, $b \sim c$, and $c \sim a$ and the resulting cycles on the graph. (Received September 11, 2014)