In the pursuit-evasion game cops and robbers, a team of cops and a robber occupy vertices of a connected graph and alternately move along its edges. The minimum number of cops required to catch the robber is called the cop number (denoted c). Previous work by Beveridge et al. has shown that the Petersen graph is the unique smallest graph which requires three cops: it’s the only graph on 10 vertices with $c = 3$, and all graphs on 9 or fewer vertices have $c \leq 2$. (This result was previously found by Baird & Bonato via computational search.)

In the variant lazy cops and robbers, the cops may only choose one member of their squad to make a move when it’s their turn. Analogously to Beveridge’s result, we have found the 3×3 Rook’s graph ($R_3 = K_3 \square K_3$ with 9 vertices) is the unique smallest graph with $c_L = 3$. We will share a self-contained proof of this fact. In addition, we will share computational results for graphs on 10 or more vertices, hunting for distinct structures that necessitate 3 lazy cops. Finally, we will share progress made towards the general conjecture that R_n is the unique smallest graph with $c_L = n$. (Received September 19, 2016)