Here we give a combinatorial proof of an inequality that was first proven by Christine Bessenrodt and Ken Ono. Bessenrodt and Ono proved that the number of partitions of \(n \), say \(p(n) \), satisfies \(p(a)p(b) > p(a+b) \) for \(a, b > 1 \) and \(a + b > 9 \) by using a result of Lehmer and asked whether a combinatorial proof exists. Here we prove the inequality combinatorially and show that the proof can also be extended to prove the analogous inequality for \(k \)-regular partitions with \(k \geq 2 \). For \(2 \leq k \leq 6 \), these inequalities were first proven to hold for \(k \)-regular partitions by Olivia Beckwith and Christine Bessenrodt using similar methods to the \(p(n) \) case. (Received September 20, 2016)