1125-11-1391 Alexander Borselli* (apb211@lehigh.edu), Christmas Saucon Hall, 14 E. Packer Ave., Bethlehem, PA 18015. ρ-Minimal Transitive Permutation Groups and Ranks of CM Types in Degree 24.

The rank of an Abelian variety A of type (K, Φ) , $t(A) = t(\Phi)$, is the rank of the free Z-module M spanned by the G-orbit of Φ , where $G = \operatorname{Gal}(K^C/\mathbb{Q})$, inside the Z-module spanned by the 2n embeddings of K into C. If t(A) = n + 1, A is said to be nondegenerate. If $t(A) = t(\Phi) < n + 1$ and A is simple, then A is said to be degenerate. The groups, G, are transitive permutation groups of degree 2n with even order center, of which there are 19, 126 in degree 2n = 24. To grasp this problem we look at ρ -minimal transitive permutation groups and minimally transitive permutation groups with even order center. A ρ -minimal group, G, of degree 2n is a group with a central order 2 element, ρ , such that $G = < \rho > \times M$, where M is a minimally transitive permutation group of degree 2n, and G has no proper transitive subgroup with a central order 2 element. In this talk I will discuss their construction in degree 24 and give the ranks of types for these groups and for minimal groups with even order centers. (Received September 16, 2016)