Suppose that L/K is a finite, cyclic extension of number fields with Galois group G. Let S be a finite set of primes of K that contains all the infinite primes. The extension of ideals from K to L induces the S-capitulation map, whose kernel classifies the S-ideal classes in K that become principal in L. In this talk, we first interpret the kernel and cokernel of the S-capitulation map in terms of $C_{L,S}$, the S-idèle class group of L. We then relate the arithmetic of $C_{L,S}$ to that of $U_{L,S}$, the group of S-units of L. We show that many known results in algebraic number theory, in particular Hilbert’s Theorem 94, follow as a direct consequence of our idèle-theoretic results. (Received September 17, 2016)