Coppersmith’s method is an approach to finding small integral solutions to polynomial congruences. Given a monic polynomial \(f(x) \in \mathbb{Z}[x] \) of degree \(d > 1 \) and a positive integer \(N \), Coppersmith devised a polynomial time method for finding all integers \(r \) for which
\[
f(r) \equiv 0 \mod N
\]
and \(|r| < N^{1/d} \). In this talk we will show a connection between Coppersmith’s method and adelic capacity theory, as developed by Cantor and Rumely. We will be able to use results from capacity theory to prove that the \(N^{1/d} \) is sharp in Coppersmith’s method. Time permitting, we will also show why proposed modifications to Coppersmith’s algorithm still cannot break this barrier for \(N \) of cryptographic interest. This is joint work with Ted Chinburg, Brett Hemenway and Nadia Heninger. (Received September 12, 2016)