A positive linear fractional transformation (PLFT) is a function of the form \(f(z) = \frac{az+b}{cz+d} \) where \(a, b, c, \) and \(d \) are nonnegative integer coefficients with determinant \(ad - bc \neq 0 \). Nathanson defined a PLFT \((u, v)\)-Calkin-Wilf tree, with \(u, v \) positive integers, as an infinite rooted binary tree where every vertex is labelled by a PLFT using a simple set of rules. If a vertex is labelled by the PLFT \(f(z) \), then the left child of the vertex is labelled by \(L_u(f(z)) \) and the right child is labelled by \(R_v(f(z)) \) where \(L_u(z) = \frac{z}{uz+1} \) and \(R_v(f(z)) = z + v \). In this talk we study the size of the coefficients of PLFTs appearing in certain PLFT \((u, v)\)-Calkin-Wilf trees. This is joint work with Sandie Han, Ariane M. Masuda, and Satyanand Singh (Received September 13, 2016)