A dessin d’enfant in a surface S is an embedded bipartite graph in the surface. The dessin determines the conformal structure of S. A surface admits a dessin d’enfant if and only if its is defined over a number field (as complex curve), and equivalently S is a covering on the projective line ramified on three points. Here we show that, with a few exceptions, a dessin d’enfant in a surface S_g of genus g, with rotational group of order $4g$ determines Wiman’s curve of type II: $y^2 = x(x^{2g} - 1)$. (Received August 24, 2016)