The study of noncommutative Zariski cancellation problems has been initiated by Bell and Zhang. A k–algebra A is said to be cancellative if $A[t] \cong B[t]$ for any k–algebra B implies $A \cong B$. Bell and Zhang have established several useful criteria for an algebra A to be either universally cancellative, or strongly cancellative, or cancellative. In particular, they have proved that many PI algebras with effective discriminants are strongly cancellative; and any k–algebra A with a trivial center is universally cancellative. In this talk, we first explore the connection between the group of unipotent automorphisms and the cancellation property for any connected graded k–algebra A. Assume that k is a field of characteristic zero and A is a k–algebra of finite Gelfand-Kirillov dimension. We prove that if $\text{Aut}_{\text{uni}}(A) = \{\text{id}\}$, then A is cancellative. Second, we study the cancellation problem for many classes of CGL extensions. Let A be a symmetric saturated CGL extension. Under a mild condition on A, we show that A is strongly cancellative and thus cancellative. Finally, we present some results on the cancellation problem for some polynomial-based quantum Weyl algebras. (Received September 17, 2016)