1125-16-290 James S Cook* (jcook4@liberty.edu). *A*-Calculus on a Real Associative Algebra.

Let \mathcal{A} denote a real associative unital algebra of dimension n. If $f : \mathcal{A} \to \mathcal{A}$ is Frechet differentiable at p and if differential $d_p f$ is right- \mathcal{A} -linear then we say f is \mathcal{A} -differentiable at p. If \mathcal{A} is the quaternions then \mathcal{A} -differentiability gives us a method to differentiate with respect to a quaternionic variable. We contrast our definition to that which defines the derivative by a limit modulo the zero-divisors in \mathcal{A} . We also show how to construct n - 1 conjugate derivatives for which the \mathcal{A} -differentiable functions have trivial conjugate derivatives. Generalized Laplace equations derived by Wagner and later by Waterhouse are reproduced here by a simple computation. Integration over \mathcal{A} is also similar to complex analysis: there is a natural integral over \mathcal{A} which allows the FTC, Goursat's Theorem and even Cauchy's Integral Theorem. However, Cauchy's Integral Formula is not generally available. We describe a joint work with Nathan BeDell where the application of abstract algebraic techniques and integral \mathcal{A} -calculus provide solutions of \mathcal{A} -ODEs. Zero-divisors produce strange results. (Received August 24, 2016)