The Plemelj-Sokhotski jump formula says that a reasonable complex function on a reasonable Jordan curve is the difference between the boundary values of holomorphic functions on the two connected components of the complement. The holomorphic functions are obtained by a Cauchy integral. Various versions exist in the literature for different meanings of "reasonable". For Jordan curves, we choose "reasonable" to be the set of functions which are the boundary values of complex harmonic functions of finite Dirichlet energy on one of the components. We show that for quasicircles, this set of functions is the same for both complements. We furthermore show that a Plemelj-Sokhotski jump decomposition holds on quasicircles for this class of functions if and only if the domain is a quasicircle. (Received September 20, 2016)