
We consider the existence of positive solutions of the nonlinear first order problem with a nonlinear nonlocal boundary condition given by

\[x'(t) = r(t)x(t) + \sum_{i=1}^{n} f_i(t, x(t)), t \in [0, 1] \]
\[\lambda x(0) = x(1) + \sum_{j=1}^{n} \Lambda_j(\tau_j, x(\tau_j)), \tau_j \in [0, 1] \]

where \(r : [0, 1] \to [0, \infty) \) is continuous and nonlinear functions \(f_i \) and \(\tau_j \) are continuous mappings from \([0, 1] \times [0, \infty) \to [0, \infty) \) for \(i = 1, 2 \ldots, m \) and \(j = 1, 2, \ldots, n \). Here \(\lambda > 0 \) is a parameter and nonlocal points satisfy \(0 \leq \tau_1 < \tau_2 < \cdots < \tau_n \leq 1 \). We use Leray-Schauder theorem and Leggett-Williams fixed point theorem to prove our results. (Received September 15, 2016)