In this presentation, we will exhibit well-posedness of the Fornberg-Whitham equation in Besov spaces $B^s_{2,r}$ in both the periodic and non-periodic cases. This will imply the existence and uniqueness of solutions in the aforementioned spaces along with the continuity of the data-to-solution map provided that the initial data belongs to $B^s_{2,r}$. We will also provide a result on the sharpness of continuity on the data-to-solution map by showing that it is not uniformly continuous from any bounded subset of $B^s_{2,r}$ to $C([-T,T];B^s_{2,r})$. If time permits, we will observe a Cauchy-Kowalevski type theorem for this equation that establishes the existence and uniqueness of real analytic solutions and also provide blow-up criterion for solutions. (Received September 14, 2016)