In this talk we consider a generalization of energy super-critical wave maps which were introduced by Adkins and Nappi as an alternative to Skyrme wave maps. These are corotational maps from 1+3 dimensional Minkowski space into the 3-sphere which satisfy a certain semi-linear geometric wave equation. Each finite energy Adkins–Nappi wave map has a fixed topological degree n which is an integer. We will discuss recent work in which we prove that for each $n \in \mathbb{N} \cup \{0\}$ there exists a unique, non-linearly stable Adkins–Nappi harmonic map Q_n (a static solution) with degree n, and we have the following conditional large data result: any Adkins–Nappi wave map of degree n whose critical norm is bounded on its interval of existence must be global and scatter to Q_n as $t \to \pm \infty$. (Received September 20, 2016)