Lauren Sager* (lbq32@wildcats.unh.edu), Kingsbury Hall, 33 Academic Way, Durham, NH 03824. Invariant subspaces for triangular algebras in Schatten p-classes.

In this talk, we seek to characterize subspaces of the Schatten p-classes on an infinite dimensional Hilbert space \mathcal{H}, which are invariant under lower triangular algebras. In doing so, we prove a Beurling-Blecher-Labuschagne theorem for H^∞-invariant subspaces of $L^p(M, \tau)$ where M is a von Neumann algebra with semifinite, faithful, normal tracial weight τ, $0 < p \leq \infty$, and H^∞ is a non-commutative Hardy space, similar to those defined by Arveson. As an application of the main result, we completely characterize all H^∞-invariant subspaces of $L^p(M \rtimes_\alpha \mathbb{Z}, \tau)$ where $M \rtimes_\alpha \mathbb{Z}$ is the non-self-adjoint crossed product of a von Neumann algebra M by an action α on M. Then, we are able to completely characterize all lower triangular subalgebra-invariant subspaces of the Schatten p-class for $0 < p \leq \infty$. Our result answered a question asked implicitly by McAsey, Muhly and Saito in 1979. (Received September 19, 2016)