Let \(\{u(t; x); t \in [0; T], x \in \mathbb{R}^d\} \) be the solution to the linear fractional stochastic heat equation driven by a fractional noise in time with correlated spatial structure. We first prove the existence and uniqueness of the solution process \(u \), then study various path properties of \(u \) with respect to the time and to the space variable, respectively. In particular, we derive exact uniform moduli of continuity and Chung-type laws of iterated logarithm. (Received August 31, 2016)