A not necessarily proper edge-coloring on a graph yields a color palette \(c(v) = \{a_i \ldots, a_k\} \) for each vertex \(v \) where \(a_i \) is the number of edges incident to \(v \) with color \(i \). We reorder \(c(v) \) for every \(v \) in non-increasing order to obtain the \textit{color-blind partition} \(c^*(v) \). When the color-blind partition forms a proper vertex labeling, we say that the edge-coloring is \textit{color-blind distinguishing}, and we let \(\text{dal}(G) \) be the smallest number of colors necessary for a color-blind distinguishing edge-coloring.

In this talk, we examine the problem of determining \(\text{dal}(G) \) for graphs of low degree, and show its connection with computational complexity theory and hypergraph coloring. We show that, for general graphs, determining \(\text{dal}(G) \) is NP-complete even when it is known that \(\text{dal}(G) \in \{2, 3\} \). However, we can use known results from hypergraph coloring to deal with regular bipartite graphs. (Received September 20, 2016)