Ralph P Grimaldi* (grimaldi@rose-hulman.edu), Rose-Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, IN 47803. Extraordinary Subsets: A Generalization.

For \(n \) a positive integer, a subset \(S \) of \([n]\) is called extraordinary if \(|S| \) equals the smallest element of \(S \). The number of such extraordinary subsets, for a given \(n \), is counted by \(F_n \), the \(n \)th Fibonacci number. For \(1 \leq k \leq n \), we call a subset \(S \) of \([n]\) \(k \)-extraordinary if \(|S| \) equals the \(k \)th smallest element of \(S \). When \(k = 1 \) such a subset \(S \) is 1-extraordinary (or, simply extraordinary). If we let \(a_{n,k} \) count the number of \(k \)-extraordinary subsets of \([n]\), we examine how \(a_{n,k} \) is related to \(a_{n-1,k} \) and \(a_{n-2,k} \). Further, we find that \(\sum_{k=1}^{n} a_{n,k} = 2^{n-1} \) and that \(\sum_{i=1}^{n} a_{i,k} = a_{n+2,k} - a_{n+1,k-1} \). (Received September 09, 2016)