1116-16-2513 Sam Mendelson* (smendels@gmu.edu) and Geir Agnarsson. Matrix Algebras: Equivalent Ring Relations and Special Presentations.

A classic result in noncommutative ring theory states that a ring R is an $n \times n$ matrix ring if, and only if, R contains n^2 matrix units $\{e_{ij}\}_{1 \le i,j \le n}$. In this case $R \cong M_n(S)$ where S is a subring of R that can be described completely in terms of the matrix units. A lesser known result states that a ring R is an $(m+n) \times (m+n)$ matrix ring $(R \cong M_{m+n}(S))$ for some ring S) if and only if, R contains three elements a, b, and f satisfying the two relations $af^m + f^nb = 1$ and $f^{m+n} = 0$. In this talk, we investigate algebras over a commutative ring (or field) with elements c and d satisfying the two relations d and d and d and d and d and investigate these algebras over the fields d and d and d and investigate these algebras over the fields d and d and d and investigate these algebras over the fields d and d and d and investigate these algebras over the fields d and d and d and investigate these algebras over the fields d and d and