Let $f$ be continuously differentiable on unit square of order $(r,p)$, $r, p$ in $\mathbb{N}$, and let $L$ be a linear left fractional mixed partial differential operator such that $L(f)$ is non-negative, for all $(x,y)$ in a critical region of unit square that depends on $L$. Then there exists a sequence of two-dimensional polynomials $Q_{m,n}(x,y)$ with $L(Q_{m,n}(x,y))$ non-negative there, where $m,n$ in $\mathbb{N}$ such that $m>r, n>p$, so that $f$ is approximated left fractionally simultaneously and uniformly by $Q_{m,n}$ on unit square. This restricted left fractional approximation is accomplished quantitatively by the use of a suitable integer partial derivatives two-dimensional first modulus of continuity. (Received June 05, 2015)