1135-15-200 Wei Gao* (wzg0021@auburn.edu), Parker Hall 221, Department of Mathematics and Statistics, Auburn University, Auburn, AL 36830, and Zhongshan Li and Lihua Zhang. Tree Sign Patterns that Require \mathbb{H}_n .

A sign pattern (matrix) \mathcal{A} is a matrix whose entries are from the set $\{+, -, 0\}$. The qualitative class of \mathcal{A} , denoted $Q(\mathcal{A})$, is defined as $Q(\mathcal{A}) = \{B \in M_n(\mathbb{R}) \mid \operatorname{sgn}(B) = \mathcal{A}\}$. The refined inertia of a square real matrix B, denoted $\operatorname{ri}(B)$, is the ordered 4-tuple $(n_+(B), n_-(B), n_z(B), 2n_p(B))$, where $n_+(B)$ (resp., $n_-(B)$) is the number of eigenvalues of B with positive (resp., negative) real part, $n_z(B)$ is the number of zero eigenvalues of B, and $2n_p(B)$ is the number of pure imaginary eigenvalues of B. The set of refined inertias $\mathbb{H}_n = \{(0, n, 0, 0), (0, n-2, 0, 2), (2, n-2, 0, 0)\}$ is important for the onset of Hopf bifurcation in dynamical systems. An $n \times n$ sign pattern \mathcal{A} is said to require \mathbb{H}_n if $\mathbb{H}_n = \{\operatorname{ri}(B) | B \in Q(\mathcal{A})\}$. In this talk, we discuss the star and path sign patterns that require \mathbb{H}_n . It is shown that for each $n \geq 5$, a star sign pattern requires \mathbb{H}_n if and only if it is equivalent to one of the five sign patterns identified in the talk. It is also shown that no path sign pattern of order $n \geq 5$ requires \mathbb{H}_n . (Received August 08, 2017)