1135-49-341 **Thomas Wunderli*** (twunderli@aus.edu), PO Box 26666, The American University of Sharjah, Sharjah, Sharjah POBox26666, United Arab Emirates. *Further Results for Functionals on BV* Space with Carathéodory Integrands. Preliminary report.

In this paper we provide conditions on $\varphi(x, p)$ for which the formula

$$\begin{split} \int_{\Omega} \varphi(x, Du) &:= \sup_{\phi \in \mathcal{V}} \left\{ -\int_{\Omega} u \div \phi + \varphi^*(x, \phi(x)) dx \right\} \\ &= \int_{\Omega} \varphi(x, \nabla u) dx + \int_{\Omega} \psi(x) \|D^s u\| \end{split}$$

holds for each $u \in BV(\Omega)$. Here $\varphi : \Omega \times \mathbf{R}^N \to \mathbf{R}, \ \Omega \subset \mathbf{R}^N$ open and bounded, φ convex in p for a.e. x, φ satisfies the linear growth assumption $\varphi(x, p) \leq \psi(x)|p| + c$ for each $|p| \geq \beta$, for a.e. x, \mathcal{V} is defined by

$$\mathcal{V} = \left\{ \phi \in C_0^1(\Omega, \mathbf{R}^N) : \phi(x) \le \psi(x) \text{ for all } x \in \Omega \right\},\$$

 φ^* is the convex dual of φ , and $||D^s u||$ is the singular part of Du. Importantly, continuity in x is not assumed. Existence results to certain minimization problems involving $\int_{\Omega} \varphi(x, Du)$ over BV space then easily follow. (Received September 14, 2017)