1145-05-1205 N. Jonoska* (jonoska@mail.usf.edu), J. Durand-Lose and H.J. Hoogeboom. The Computational Power of Deterministic Tile Self-assembly.

Complex DNA molecules that can build large two-dimensional arrays are modeled by square Wang tiles with colored edges. The assembly process is simulated by placing Wang tiles, one after another on the integer lattice \mathbb{Z}^2 , where at least one edge between neighboring tiles has a matching color. The systems where assemblies with mismatched colors are allowed are considered 'non-cooperative'. We consider non cooperative binding, in deterministic (called *confluent*) tile self-assembly systems (TAS) and prove the standing conjecture that such systems do not have universal computational power. We observe that a confluent TAS has at most one maximal producible assembly, (an assembly that cannot grow further) α_{max} and provide a characterization for α_{max} . To a given α_{max} we associate a finite labeled directed graph such that every path visits at most two cycles, called *quipu*. We show that the union of all labels of paths in a quipu equals α_{max} , therefore giving a finite description for α_{max} . This finite description implies that α_{max} is a union of semi-linear subsets of \mathbb{Z}^2 and therefore such systems cannot have universal computational power. (Received September 20, 2018)