1145-05-2268 Alexander Diaz-Lopez* (diazlopezalexander@gmail.com), 800 Lancaster Ave, Villanova, PA 19006. Peak polynomials and their coefficients.

We say that a permutation $\pi=\pi_{1} \pi_{2} \cdots \pi_{n} \in \mathfrak{S}_{n}$ has a peak at index i if $\pi_{i-1}<\pi_{i}>\pi_{i+1}$. Let $\mathcal{P}(\pi)$ denote the set of indices where π has a peak. Given a set S of positive integers, we define $\mathcal{P}(S ; n)=\left\{\pi \in \mathfrak{S}_{n}: \mathcal{P}(\pi)=S\right\}$. In 2013 Billey, Burdzy, and Sagan showed that for subsets of positive integers S and sufficiently large $n,|\mathcal{P}(S ; n)|=p_{S}(n) 2^{n-|S|-1}$ where $p_{S}(x)$ is a polynomial depending on S called the peak polynomial associated to S. In this talk we will study peak polynomials, their roots, peak positivity conjecture, as well as a combinatorial interpretation for the coefficients of $p_{S}(x)$ when written in a binomial basis. (Received September 25, 2018)

