1145-05-2868 Anisah N. Nu'Man* (anuman@ursinus.edu). Counting Rainbow Triples. Preliminary report.
Let $S=[n]$. Given the equation $(e q): c_{1} x+c_{2} y=c_{3} z$, for constants c_{1}, c_{2}, and c_{3}, let T be the subset of $[n]$ consisting of all solutions to the equation (eq). For $r \in \mathbb{N}$, an exact r-coloring of $[n]$ is a surjective map $c:[n] \rightarrow[r]$. We say that a subset of T is rainbow if every element in the subset has a different color. The rainbow number of n with respect to the equation eq, denoted $r b(n, e q)$, is the minimum number of colors needed to guarantee that any (exact) coloring of $[n]$ has a rainbow in T. Thus, $\operatorname{rb}\left(n, c_{1} x_{1}+c_{2} x_{2}=c_{3} x_{3}\right)=r$ implies that there exists an exact $(r-1)$-coloring of $[n]$ that contains no rainbow solutions and that any exact r-coloring of $[n]$ will contain a rainbow solution. Within this talk we will discuss upper and lower bounds for the rainbow number of $\operatorname{rb}\left([n], x_{1}+k x_{2}=x_{3}\right)$, where $k \geq 1$. (Received September 25, 2018)

