1145-05-94 Melanie Ferreri* (fermj15@wfu.edu) and Jacob Liddy (liddyjacob@gmail.com). Ramsey Problems for Cycles versus K_{5}.
For graphs F, G, and H, if all red-blue edge colorings of F contain either red G or blue H as a subgraph, then we write $F \rightarrow(G, H)$. The Ramsey number for graphs G and H, denoted $R(G, H)$, is the smallest integer s such that $K_{s} \rightarrow(G, H)$. It is known that $R\left(C_{n}, K_{5}\right)=4 n-3$ for $n \geq 5$. We prove that for all $n \geq 5$, any graph on $4 n-4$ vertices which does not contain C_{n} or an independent set of order 5 contains $4 K_{n-1}$, and thus we characterize all Ramsey-critical graphs for C_{n} versus K_{5}. The graph $K_{s-1} \sqcup K_{1, t}$ is constructed by adding a vertex to K_{s-1} and joining it to t of its vertices. The star-critical Ramsey number $r_{*}(G, H)$ is defined as the minimum t such that $K_{s-1} \sqcup K_{1, t} \rightarrow(G, H)$, where $s=R(G, H)$. Values of $r_{*}\left(C_{n}, K_{m}\right)$ are known for $m \in\{3,4\}$. In this work, we extend this to $m=5$ and some cases for $m=6$, and we present computational proofs of small cases and a computer-free proof of the general result for $n \geq 8$ and $m=5$. We also compile a survey of known star-critical Ramsey numbers involving simple graphs such as cycles, paths, and fans. (Received July 28, 2018)

