It was shown in an earlier publication that the Ricker equation with Almost Periodic coefficient with finitely generated frequency module and with average value lying in $(0,2)$ has Almost Periodic solutions lying on a torus T of the same dimension as the (finite) number of independent generators of the frequency module of the coefficient. The hull H of the coefficient is itself a torus homeomorphic to T and isomorphic to T as an Abelian group.

In this paper we find a bifurcation function and show that if the magnitude of the oscillatory part of the coefficient is increased and the average part is then increased above a bifurcation curve a pair of tori bifurcate, each of which is invariant under the composition of two Ricker maps in sequence and enjoys all the properties as in the pre-bifurcation case. In addition we show all the tori discussed above are C^1 smooth.

It is also surprising to notice that the stability interval $(0,2)$ is increased as the magnitude of the oscillatory part of the coefficient is increased. Finally the case of a frequency module that is infinitely generated is treated. (Received September 18, 2018)