1145-46-2717 Laszlo Zsido^{*} (zsido@axp.mat.uniroma2.it), Departimento di Matematica, Universita di Roma "Tor Vergata", Via Della Ricerca Scientifica 1, 00133 Roma, Italy. A quantitative BT-theorem and applications.

The classical "BT-Theorem" of Murray and von Neumann states that if M is a von Neumann algebra on a Hilbert space H, and ξ , η are vectors in H such that η belongs to the closure of $M\xi$, then $\eta = bT\xi$ where $b \in M$ and T is a densely defined, closed linear operator affiliated to M. It can be extended to sequences in $\overline{M\xi}$ as follows:

If $(\eta_k)_{k>1}$ is a sequence in $\overline{M\xi}$ such that

$$\sum_{k=1}^\infty \|\eta_k\|^2 < +\infty\,,$$

then

$$\eta_k = b_k T \xi \,, \qquad k \ge 1$$

where T is a densely defined, closed linear operator affiliated to M and $b_k \in M$ can be chosen such that $\lim_{k \to \infty} ||b_k|| = 0$.

The above extended "BT-Theorem" can be applied to the proof of automatic continuity results in fairly general situations.

This talk is based upon joint work with Francesco Fidaleo. (Received September 25, 2018)