1145-VL-1318 Daniel A McGinnis* (daniel.mcginnis15@ncf.edu), 5800 Bay Shore Road, Sarasota, FL 34243, and Eirini Poimenidou. Construction of a 2n-Starter from a 2-Starter, and New Solutions to the Oberwolfach Problem. Preliminary report.

We demonstrate a method of constructing a 1-rotational 2n-factorization under $G \times \mathbb{Z}_n$ given a 1-rotational 2-factorization under a finite group G. This construction, given a 1-rotational solution to the Oberwolfach problem $OP(a_{\infty}, a_1, a_2 \cdots, a_n)$, allows us to find a solution to $OP(2a_{\infty} - 1, ^2 a_1, ^2 a_2 \cdots, ^2 a_n)$ when the a_i 's are even $(i \neq \infty)$, and $OP(p(a_{\infty} - 1) + 1, ^p a_1, ^p a_2 \cdots, ^p a_n)$ when p is an odd prime, with no restrictions on the a_i 's. (Received September 20, 2018)