1154-VS-890

Gabriel Khan, Mizan R. Khan, Joydip Saha and Peng Zhao* (peng.zhao@indstate.edu), Department of Mathematics, Indiana State University, Terre Haute, IN 47809. A Conjectural Inequality for Visible Points in Lattice Parallelograms.

Let $a, n \in \mathbb{Z}^+$, with a < n and gcd(a, n) = 1. Let $P_{a,n}$ denote the lattice parallelogram spanned by (1, 0) and (a, n), that is,

$$P_{a,n} = \{t_1(1,0) + t_2(a,n) : 0 \le t_1, t_2 \le 1\},\$$

and let

V(a,n) = # of visible lattice points in the interior of $P_{a,n}$.

In this talk, we present some interesting results for V(a, n). The numerics and graphs suggest the conjecture that for $a \neq 1, n-1, V(a, n)/n$ satisfies the inequality

(Received September 11, 2019)