Preservation properties are a tool for separating the reverse mathematical strength of various statements. As an example, if I is a Turing ideal and X is a set outside I, then there is an ideal J containing I but omitting X and which models WKL$_0$. The same holds with RT$_2^2$ in place of WKL$_0$, but this fails for RT$_3^2$, thus showing that WKL$_0$ and RT$_2^2$ do not prove RT$_3^2$.

In fact, for both WKL$_0$ and RT$_2^2$, the above holds not just for a single set X, but for countably many sets simultaneously. In both cases, the proofs for one set and for countably many sets are more or less the same. It turns out there’s a reason for this: any reverse mathematical principal (of the appropriate form) which can be satisfied while avoiding a single set can be satisfied while avoiding countably many.

This is an example of a relationship between preservation properties. We investigate similar relationships between various preservation properties. (Received September 14, 2020)