generating functions for signed pattern avoiding permutations.
We consider the classical Mahonian statistics on the set $B_{n}(\Sigma)$ of signed permutations in the hyperoctahedral group B_{n} which avoid all patterns in Σ, where Σ is a set of patterns of length two. In 2000 , Simion gave the cardinality of $B_{n}(\Sigma)$ in the cases where Σ contains either one or two patterns of length two and showed that $\left|B_{n}(\Sigma)\right|$ is constant whenever $|\Sigma|=1$, whereas in most but not all instances where $|\Sigma|=2,\left|B_{n}(\Sigma)\right|=(n+1)$!. We answer an open question of Simion by providing bijections from $B_{n}(\Sigma)$ to S_{n+1} in these cases where $\left|B_{n}(\Sigma)\right|=(n+1)$!. In addition, we extend Simion's work by providing a combinatorial proof in the language of signed permutations for the major index on $B_{n}(21, \overline{2} \overline{1})$ and by giving the major index on $D_{n}(\Sigma)$ for $\Sigma=\{21, \overline{2} \overline{1}\}$ and $\Sigma=\{12,21\}$. The main result of this paper is to give the inversion generating functions for $B_{n}(\Sigma)$ for almost all sets Σ with $|\Sigma| \leq 2$. (Received September 15, 2020)

