refined approach to the Lonely Runner Problem.
We introduce a sharpened version of the well-known Lonely Runner Conjecture of Wills and Cusick. Let $\|x\|$ denote the distance from a real number x to the nearest integer. For each set of positive integer speeds v_{1}, \ldots, v_{n}, define the associated maximum loneliness

$$
\operatorname{ML}\left(v_{1}, \ldots, v_{n}\right)=\max _{t \in \mathbb{R}} \min _{1 \leq i \leq n}\left\|t v_{i}\right\| .
$$

The Lonely Runner Conjecture asserts that

$$
\operatorname{ML}\left(v_{1}, \ldots, v_{n}\right) \geq \frac{1}{n+1}
$$

for all choices of v_{1}, \ldots, v_{n}. If this conjecture is true, then the quantity $1 /(n+1)$ is the best possible, for there are known equality cases with $\operatorname{ML}\left(v_{1}, \ldots, v_{n}\right)=1 /(n+1)$. A natural but hitherto unasked question is: If v_{1}, \ldots, v_{n} satisfy the Lonely Runner Conjecture but are not an equality case, must $\operatorname{ML}\left(v_{1}, \ldots, v_{n}\right)$ be uniformly bounded away from $1 /(n+1)$?

We conjecture that, surprisingly, the answer is yes. More precisely, we conjecture that for each choice of v_{1}, \ldots, v_{n}, we have either $\operatorname{ML}\left(v_{1}, \ldots, v_{n}\right)=s /(n s+1)$ for some $s \in \mathbb{N}$ or $\operatorname{ML}\left(v_{1}, \ldots, v_{n}\right) \geq 1 / n$. Our main results are: confirming this stronger conjecture for $n \leq 3$; and confirming it for $n=4$ and $n=6$ in the case where one speed is much faster than the rest. (Received September 15, 2020)

