The Ehrhart quasipolynomial of a rational polytope P encodes the number of integer lattice points in dilates of P, and the h^*-polynomial of P is the numerator of the accompanying generating function. We provide two decomposition formulas for the h^*-polynomial of a rational polytope. The first decomposition generalizes a theorem of Betke and McMullen for lattice polytopes. We use our rational Betke–McMullen formula to provide a novel proof of Stanley’s Monotonicity Theorem for the h^*-polynomial of a rational polytope. The second decomposition generalizes a result of Stapledon, which we use to provide rational extensions of the Stanley and Hibi inequalities satisfied by the coefficients of the h^*-polynomial for lattice polytopes. Lastly, we apply our results to rational polytopes containing the origin whose duals are lattice polytopes. (Received September 03, 2020)