partition function modulo 3. Preliminary report.
Ramanujan's congruences for the partition function and generalizations of the form $p(a n+b) \equiv 0(\bmod m)$ have been of special interest in the past century. In 2010, Ono showed that such congruences exist modulo all primes $m \geq 5$, which was further extended to all m coprime to 6 . However, the cases $m=2,3$ has been more elusive. In 2010, Ono constructs a generating function using generalized Borcherds' products to show that given $D \equiv-1(\bmod 24)$, if there exist n coprime to 6 such that $p\left(\frac{D n^{2}+1}{24}\right) \equiv 0(\bmod 2)\left(\right.$ respectively, $\left.p\left(\frac{D n^{2}+1}{24}\right) \equiv 1(\bmod 2)\right)$, then there are infinitely many such n. In this talk, we use a similar construction to examine the case modulo 3. (Received September 15, 2020)

