Let G be a finite abelian group, written additively. The plus-minus Davenport constant, $D_{\pm}(G)$, is the smallest positive number s such that for any set \(\{g_1, g_2, \ldots, g_s\} \) of s elements in G, with repetition allowed, there exists a subset \(\{g_{i_1}, g_{i_2}, \ldots, g_{i_t}\} \) such that $g_{i_1} \pm g_{i_2} \pm \cdots \pm g_{i_t} = 0$. We define $D_{e\pm}(G)$ similarly but we require our subset to have even length. In this talk, we discuss the connections between $D_{e\pm}(G)$ and $D_{\pm}(G)$ for when $G = C_2 \oplus C^m_3$. (Received September 15, 2020)