1163-11-29 Michael David Fried* (michaeldavidfried@gmail.com). Every finite group challenges extending Falting's Theorem.

Consider finite group G; ℓ a prime dividing |G| (|G| has no \mathbb{Z}/ℓ quotient); and $\mathbb{C} = {C_1 \dots C_r}$ any $r \ge 4$ conjugacy classes of order prime to ℓ elements. Ex: $G = A_5$, \mathbb{C} is 4 repetes of the 3-cycle conjugacy class, and $\ell = 2$.

For $(G, \mathbf{C}, \ell), M' \in I, |I| < \infty$ gives a $\mathbf{Z}_{\ell}[G]$ lattice $L_{M'}$ as kernel of an ℓ -Frattini cover $\tilde{G}_{M'} \to G \implies$ a moduli space series

$$\cdots \to \mathcal{H}(G, \mathbf{C}, \ell, L)_k \to \cdots \to \mathcal{H}(\dots)_1 \to \mathcal{H}(G, \mathbf{C}, \ell, L)_0 \to J_r.$$

Terms are quadi-projective varieties. When r = 4 all are upper half plane quotients; J_4 is the classical *j*-line, minus ∞ .

Only for G "close to" dihedral (r = 4) are these modular curves.

Main Conjecture: Let K be any number field. For k large, projective normalization of $\mathcal{H}(G, \mathbf{C}, \ell, L)_k$ has general type, and $\mathcal{H}(G, \mathbf{C}, \ell, L)_k$ has no K points.

For r = 4, there are two proofs (myself/Cadoret-Tamagawa). We compare these results and how even this presents an unproven challenge to extending Falting's Theorem. (Received July 08, 2020)