1163-11-747 Hanson Smith* (hanson.smith@uconn.edu). Ramification in Division Fields and Sporadic Points on Modular Curves.

Consider an elliptic curve E over a number field K. Suppose that E has supersingular reduction at some prime \mathfrak{p} of K lying above the rational prime p and that E(K) has a point of exact order p^n . To describe the minimum necessary ramification at \mathfrak{p} , one can classify the valuations of the p^n -torsion points of E by the valuation of a coefficient of the p^{th} division polynomial. In particular, if E does not have a canonical subgroup at \mathfrak{p} , one can show that \mathfrak{p} has ramification index at least $p^{2n} - p^{2n-2}$ over p.

In this talk we will briefly outline how to achieve such a classification. We will then apply our work to show that sporadic points on the modular curve $X_1(p^n)$ cannot correspond to supersingular elliptic curves without a canonical subgroup. Our methods are generalized to $X_1(N)$ with N composite. (Received September 12, 2020)