Zachary L Scherr* (scherr@susqu.edu) and Katherine Thompson (kthomps@usna.edu).

 Integral Polynomial Pell Equations.In his work on the Pell equation, Euler discovered several interesting polynomial identities included among them that $\left(2 n^{2}+1\right)^{2}-\left(n^{2}+1\right)(2 n)^{2}=1$ for every n. Motivated by Euler's examples, one can ask whether it is possible to classify all such identities. In particular, for which polynomials $d(x) \in \mathbb{Z}[x]$ do there exist non-trivial solutions to $f(x)^{2}-d(x) g(x)^{2}=1$ with $f(x), g(x) \in \mathbb{Z}[x]$? Yokota and Webb classified all such quadratic $d(x)$ and asked about the situation with $d(x)$ of degree at least 4 . In this talk we'll classify all monic, quartic, $d(x)$ which give rise to non-trivial solutions to Pell's equation. In particular, we'll show that other than the previously known examples there is exactly one infinite family of such $d(x)$. The resolution of this problem is connected to work by Mazur and Kubert on rational torsion points on elliptic curves over \mathbb{Q}. (Received September 12, 2020)

