Kristen L Hallas* (kristen.hallas01@utrgv.edu), Joan M Mattle (jmattle@ithaca.edu), Deanna C Perez (dcp@csu.fullerton.edu) and Aklilu Zeleke (zeleke@msu.edu). Recursive Polynomials. Preliminary report.
In this talk we present some properties of Fibonacci-type recursive polynomials. After introducing the classical Fibonaccilike polynomials and the so-called Golden polynomials, we introduce recursive polynomial sequences defined by

$$
G_{n+1}(x)=x^{k} G_{n}(x)+x^{l} G_{n-1}(x), k, l \text { positive integers, }
$$

with $G_{0}=-1, G_{1}=x-1$

We discuss Binet forms, Pascal-like triangle representations and matrix representations for G_{n}, We derive interesting sequences and identities.

Lastly, we present analytic and numerical results on the nature of the real roots of G_{n}. Our work extends known results for Fibonacci-like polynomials. (Received September 14, 2020)

