1163-13-119

Scott T. Chapman^{*} (scott.chapman@shsu.edu), Department of Mathematics and Statistics, Box 2206, Huntsville, TX 77341, and Christopher O'Neill and Vadim Ponomarenko. On Length Densities.

For a commutative cancellative monoid M, we introduce the notion of the *length density* of both a nonunit $x \in M$, denoted LD(x), and the entire monoid M, denoted LD(M). This invariant is related to three widely studied invariants in the theory of non-unit factorizations, L(x), $\ell(x)$, and $\rho(x)$. We consider some general properties of LD(x) and LD(M) and give a wide variety of examples using numerical semigroups, Puiseux monoids, and Krull monoids. While we give an example of a monoid M with irrational length density, we show that if M is finitely generated, then LD(M) is rational and there is a nonunit element $x \in M$ with LD(M) = LD(x) (such a monoid is said to have accepted length density). While it is well-known that the much studied asymptotic versions of L(x), $\ell(x)$ and $\rho(x)$ (denoted $\overline{L}(x)$, $\overline{\ell}(x)$, and $\overline{\rho}(x)$) always exist, we show the somewhat surprising result that $\overline{LD}(x) = \lim_{n\to\infty} LD(x^n)$ may not exist. We also give some finiteness conditions on M that force the existence of $\overline{LD}(x)$. (Received August 17, 2020)