Neil Epstein* (nepstei2@gmu.edu). The Ohm-Rush content function and its applications.
For an R-algebra S, the (Ohm-Rush) content $c(f)$ of an element $f \in S$ is the intersection of all ideals I such that $f \in IS$. If there is always a smallest such ideal (i.e. $f \in c(f)S$), we call S an Ohm-Rush algebra. Further content-related properties carry their own names and implications. The theory examines algebraic properties of polynomial extensions $R \to R[x]$ and what can be generalized from them.

I will report on some results regarding the Ohm-Rush content function, along with applications to apparently disparate areas of commutative algebra. For instance,

- a new criterion for regularity in Noetherian reduced local rings of characteristic p.

- Given a regular field extension L/K, a Noetherian K-algebra R, and a zero-divisor $g \in S := L \otimes_K R$, some nonzero element of R kills g.

- (w/Shapiro) With R, S be as above, if S is locally a UFD, so is R.

- (w/Shapiro) $R \to \hat{R}$ (R Noetherian local) is Ohm-Rush if and only if every ideal of \hat{R} is extended from R.

- (w/Carchedi) for any ring map $R \to S$, an algebraic characterization of when the map of topological spaces $\text{Spec } S \to \text{Spec } R$ is open

(Received September 15, 2020)