1163-15-729 Raphael Loewy* (loewy@technion.ac.il). On the spectra of nonnegative symmetric 5×5 matrices.
Given a list $\sigma=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ of complex numbers the Nonnegative Inverse Eigenvalue Problem (NIEP) asks when is σ the spectrum of an $n x n$ nonnegative matrix. When σ consists of real numbers the Symmetric Nonnegative Inverse Eigenvalue Problem (SNIEP) asks when is it the spectrum of an $n x n$ nonnegative, symmetric matrix. Both problems are currently unsolved for $n \geq 5$.

We consider SNIEP in the case $n=5$. Assume the elements of σ are arranged in decreasing order, and define $s_{1}(\sigma)=\sum_{i=1}^{5} \lambda_{i}$ and $s_{3}(\sigma)=\sum_{i=1}^{5} \lambda_{i}^{3}$. The solution is known for $\lambda_{3} \leq s_{1}(\sigma)$. When $y:=\lambda_{3}-s_{1}(\sigma)>0$, we obtain a new inequality involving $y, s_{1}(\sigma)$ and $s_{3}(\sigma)$. This enables us to show that certain lists σ, previously unknown to be realizable, are not the spectra of a $5 x 5$ nonnegative, symmetric matrix. (Received September 12, 2020)

