1163-16-361Aleks Kleyn* (aleks_kleyn@mailaps.org), aleks_kleyn@mailaps.org.Calculus over quaternion
algebra.

The map $f: H \to H$ is called differentiable, if there exists differential form $\frac{df}{dx}$ such that

$$f(x+h) - f(x) = \frac{df}{dx} \circ h + o(h)$$

where

 $o:H\to H$

is such continuous map that

$$\lim_{a \to 0} \frac{\|o(a)\|}{\|a\|} = 0$$

Linear map $\frac{df(x)}{dx}$ is called derivative of map f. The differential form

$$\omega: H \to \mathcal{L}(D; H \to H)$$

is called integrable, if there exists a map

 $f: H \to H$

such that

$$\frac{df(x)}{dx} = \omega(x)$$

Then we use notation

$$f(x) = \int \omega(x) \circ dx$$

and the map f is called indefinite integral of the differential form ω .

Let $U \subseteq A$ be open set. Let

$$\gamma:[a,b]\to U$$

be a path of class C^1 in U. We define the integral of the differential 1-form ω along the path γ by the equality

$$\int_{\gamma} \omega = \int_{a}^{b} dt \omega(\gamma(t)) \frac{d\gamma(t)}{dt}$$

Differential form

 $\omega: H \to \mathcal{L}(D; H \to H)$

is integrable iff

 $d\omega(x) = 0$

For any quaternions a, b, we define definite integral by the equality

$$\int_{a}^{b} \omega = \int_{\gamma} \omega$$

which dos not depend on a path γ from a to b. (Received September 08, 2020)