The rotation groups $SO(n)$ are generated by rotations in every pair of planes in \mathbb{R}^n. The unitary groups $SU(n) \subset SO(2n)$ can be interpreted as correlated rotations of pairs of planes in \mathbb{R}^{2n}. We describe a graphical representation of these rotations at the Lie algebra level, culminating in the well-known decomposition $\mathfrak{so}(4) = \mathfrak{su}(2) + \mathfrak{su}(2)$, expressed in terms of quaternionic multiplication. Our results are not new, but their presentation is somewhat nontraditional. (Received September 10, 2020)